
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 20: Quantum Tanner Codes II
April 5, 2024

Lecturer: John Wright Scribe: Jack Spilecki

Today, we continue to study quantum Tanner codes, following the construction given by
Leverrier and Zémor [LZ22a, LZ22b].

1 Recap

It will be useful to review the construction from last time. Begin with a group G, and let
A = A−1 and B = B−1 be sets of generators for G, selected so that |A| = |B| = ∆. From
these generators, we constructed the left-right Cayley complex, the following quadripartite
graph:

V00 V10

V11V01

(g, 00)

(gb, 01)

(ag, 10)

(agb, 11)

Figure 1: The left-right Cayley complex is a quadripartite graph, with vertices V = V00 ⊔
V01⊔V10⊔V11, where Vij = G×(i, j). We have edges as indicated in the figure. The horizontal
edges, corresponding to elements a ∈ A, are A-edges, and the vertical edges, corresponding
to elements b ∈ B, are B-edges.

The most important objects in this graph are the squares, the sets of vertices of the
form {(g, 00), (ag, 10), (gb, 01), (agb, 11)}, connected by edges as in the figure. The set of all
squares is Q. For every vertex v ∈ V , we define the Q-neighborhood of v, denoted Q(v), as
the set of squares v is adjacent to. Since v is adjacent to one element for each a ∈ A, and
each b ∈ B, we have Q(v) ∼= A × B. We can represent a Q-neighborhood in the following
way:

1

Q(v) |A|

|B|

Figure 2: For any vertex v ∈ V , Q(v) can be arranged into an |A| × |B| grid of squares.

If we define the Q-neighborhoods appropriately (that is, the mapping from A×B → Q(v))
then we saw that the Q-neighborhoods for neighboring vertices are very nice: in particular,
the Q-neighborhoods for vertices connected by an A-edge share their ath rows (and no other
squares), and the Q-neighborhoods for vertices connected by an B-edge share exactly their
bth columns (and no other squares).

Remark 1.1. Relative to our last lecture, we have swapped the positions of V01 and V10 in
the left-right Cayley complex diagram. This is just because it’s pictorially nicer: horizontal
edges in the Cayley complex (resp. vertical edges) correspond to Q-neighborhoods that share
rows (resp. columns), as in Figure 3.

We also noted that the left-right Cayley complex is a a combination of four Cayley graphs:
the induced subgraphs on V00 ⊔ V10, V10 ⊔ V11, V01 ⊔ V11, and V00 ⊔ V01 are each individually
Cayley graphs. The first and third (those with A-edges) are isomorphic to (the double cover
of) CayL(G,A), and the second and fourth (those with B-edges) are isomorphic to (the
double cover of) CayR(G,B).

On these graphs, we defined two quantum codes, starting from two classical codes. Take
CA and CB to be classical linear error correcting codes on |A| and |B| bits respectively. We
ultimately want to define a CSS code, and for this we need to define an X-code and a Z-code.

Our X-code, C0, is defined as follows:

– Bits: on squares of Q.

– Local code: for each v ∈ V00⊔V11, the bits on Q(v) are elements of C⊥
A ⊗FB

2 +FA
2 ⊗C⊥

B .
An element of C⊥

A ⊗ FB
2 + FA

2 ⊗ C⊥
B can be written as c+ r, where c ∈ C⊥

A ⊗ FB
2 and

r ∈ FA
2 ⊗C⊥

B . Therefore, c is a matrix whose columns come from C⊥
A , and r is a matrix

whose rows come from C⊥
B . The matrices c and r come from natural codes, but the

code C⊥
A ⊗FB

2 +FA
2 ⊗C⊥

B asks that a neighborhood Q(v) is an overlapping of c and r,

2

Q(g, 00)

b

a

Q(gb, 01)
a

Q(ag, 10)

b

Q(agb, 11)

Figure 3: We can arrange the squares in Q-neighborhoods so that if v is adjacent to u by an
A-edge, labelled a, then Q(v) and Q(u) share their ath rows, and so that if v is adjacent to
u by a B-edge, labelled b, then Q(v) and Q(u) share their bth columns.

and in some sense “sees the two codes simultaneneously” and those codes may conflict
with each other in ways we will have to deal with later.

– Parity checks: for each v ∈ V00 ⊔ V11, the constraints (on the bits of Q(v)) are elements
of CA ⊗ CB.

We saw that this is a Tanner code on the graph G□
0 , which has vertices V00 ⊔ V11, and edges

for each square (that is, an edge between (g, 00) and (agb, 11) for each a ∈ A and b ∈ B, i.e.
between opposite vertices of squares):

C0 = Tan(G□
0 , C

⊥
A ⊗ FB

2 + FA
2 ⊗ C⊥

B).

Remark 1.2. Nothing stops us from having two vertices being part of multiple squares. So,
the graph G□

0 could have multiple edges between vertices. We came up with examples of
this last time (e.g. take G abelian, and A = B, so that agb = bga, and therefore (g, 00) and
(agb, 11) share at least two edges). We can pick G, A and B so that two vertices are part of
at most one square if we want, but it’s not necessary.

The Z-code, C1, is similar:

– Bits: on squares of Q.

3

– Local code: for each v ∈ V01⊔V10, the bits on Q(v) are elements of CA⊗FB
2 +FA

2 ⊗CB.
As in the X-code, the matrix of bits on a square Q(v) can be written as c+ r, where
c ∈ CA ⊗ FB

2 is a matrix whose columns come from CA, and r ∈ FA
2 ⊗ CB is a matrix

whose rows come from CB.

– Parity checks: for each v ∈ V01 ⊔ V10, the constraints (on the bits of Q(v)) are elements
of C⊥

A ⊗ C⊥
B .

Then C1 is also a Tanner code on the graph G□
1 , similar to G□

0 except on V01 ⊔ V10:

C1 = Tan(G□
1 , CA ⊗ FB

2 + FA
2 ⊗ CB).

2 Quantum Tanner Codes are CSS Codes

Consider an X-check on a vertex u ∈ V00. Every X-check hx on Q(u) is an element of
CA ⊗ CB. So, each column of hx is in CA, and every row of hx is in CB. Also, consider a
Z-check on a vertex v ∈ V01. Every Z-check hZ on Q(v) is an element of C⊥

A ⊗ C⊥
B : each

column of hz is in C⊥
A , and every row of hz is in C⊥

B .
In order for C0 and C1 to define a CSS code, we need the parity checks of C0 and C1 to

be orthogonal. So, we want to show hx · hz = 0. There are two cases:

1. hx and hz overlap on no squares: Q(u) ∩Q(v) = ∅. Since hx is only nonzero on Q(u),
and hz is only nonzero on Q(v), hx · hz = 0.

2. Q(u) ∩ Q(v) ̸= ∅. Then u and v are joined by a B-edge, and Q(u) ∩ Q(v) overlap
on one column, and the remaining squares are not shared. On this column, hx is an
element of CA, and hz is an element of C⊥

A . So hx ·hz, which only has a possibly nonzero
contribution from this column, is zero. See Figure 4.

Other pairs of X-checks and Z-checks have zero dot product for similar reasons. For exam-
ple, an X-check coming from V00 and a Z-check coming from V10 will act on Q-neighborhoods
that share a row of squares, and will dot to zero, since one of these rows of bits is an element
of CB and the other an element of C⊥

B .
We have therefore shown:

Fact 2.1. C0, C1 form a CSS code.

3 Parameters for Quantum Tanner Codes

Now that we have a CSS code, we want to know: how good is this code? What is its rate
and distance?

4

Q(u)

∈ CA

Q(v)

∈ C⊥
A

Figure 4: If u and v are joined by a B-edge labelled b, then Q(u) and Q(v) share the squares
in their bth row. Since the columns of Q(u) are elements of CA, and the columns of Q(v) are
elements of C⊥

A , these two columns are orthogonal.

3.1 Rate

Recall that |A| = |B| = ∆. In the left-right Cayley complex, we have |V | = 4|G| vertices,
and |Q| = |G||A||B| = |G|∆2 squares. For our code, which is defined on the squares,
n = |Q| = |G|∆2.

We have to pick CA and CB appropriately if we want a good quantum Tanner code. We
are going to pick CA = [∆, ρ∆], where ρ ∈ (0, 1) is a constant, and CB = [∆, (1− ρ)∆]. This
second choice looks a little funny, but will make expressions we see shortly symmetric.

How many independent parity checks do we have in our CSS code? This will allow us to
compute the dimension of the CSS code. For the X-code, every vertex imposes parity checks
from CA ⊗ CB. Since

dim(CA ⊗ CB) = dim(CA) dim(CB) = ρ∆ · (1− ρ)∆ = ρ(1− ρ)∆2,

this is the number of independent parity checks in the X-code, for a given vertex. For the
Z-code, parity checks come from C⊥

A ⊗ C⊥
B , and

dim(C⊥
A⊗C⊥

B) = dim(C⊥
A) dim(C⊥

B) = (∆−dim(CA))(∆−dim(CB)) = (1−ρ)∆·ρ∆ = ρ(1−ρ)∆2.

We’ve used here that CA and CB are each codes on ∆ bits. Note that our choice for
the dimension of CB makes the number of parity checks of each type equal. The overall

5

number of X-checks in C0 is then at most 2|G| · ρ(1 − ρ)∆2, since there are 2|G| vertices
in G□

0 , and each vertex provides ρ(1 − ρ)∆2 independent checks, though these may not all
be independent. Similarly, there are at most 2|G|ρ(1 − ρ)∆2 independent Z-checks in C1.
Finally, the dimension of the CSS code is

k = n− ℓX − ℓZ

≥ |G|∆2 − 4|G|ρ(1− ρ)∆2

= (1− 4ρ(1− ρ))|G|∆2

= (1− 2ρ)2n.

So long as ρ ̸= 1/2, the CSS code has constant rate.

3.2 Locality

Each parity check only involves a single Q-neighborhood, and each Q-neighborhood has size
∆2. Moreover, each qubit, which corresponds to a square, is part of at most 4ρ(1−ρ)∆2 parity
checks. This is because a square has four vertices, and hence is in four Q-neighborhoods.
For each of these neighborhoods, there are at most ρ(1− ρ)∆2 checks that may act on that
square. Since 4ρ(1 − ρ) ≤ 1, there are therefore ∆2 checks a qubit may be involved in. So
long as ∆ is constant, the CSS code has constant locality.

Remark 3.1. If we really care about the locality of the code, the first construction of
QLDPC codes, by Panteleev and Kalachev [PK22], has locality ∆ instead of ∆2.

3.3 Distance

Just like with classical Tanner codes, if all we care about is the rate of Tanner code, then all
that matters is the rate of the inner code. The distance of the inner code only comes into
play now that we are computing the distance of the Tanner code.

We will assume that we have picked CA, CB, C
⊥
A and C⊥

B so that they all have good
distance. In particular, they all have distance at least δ∆, for some nonzero constant δ. We
have seen previously that for random codes, both the code and its dual have good distance.

However, as in the case of classical Tanner codes, it is not sufficient that the inner code
has good minimum distance – we also need that the graph has good expansion properties.
For this, we will need to pick G, A and B so that CayL(G,A) and CayR(G,B) are good
expanders – in particular, so that they are Ramanujan. Here this means, for either graph,
λ ≤ 2

√
∆, since ∆ is the degree of each graph.

However, what we really care about (at least if we were constructing a classical Tanner
code) is the expansion properties of the graphs on which we define the Tanner code. Neither
of these Cayley graphs are the Tanner code graphs, which are instead G□

0 and G□
1 . What is

the expansion of these graphs?

Fact 3.2. If λ(CayL(G,A)), λ(CayR(G,B)) ≤ 2
√
∆, then λ(G□

0), λ(G□
1) ≤ 4∆ = 4

√
∆2.

Since ∆2 is the degree of these graphs, G□
0 and G□

1 are almost Ramanujan.

6

V00 V10

V11V01

(g, 00)

(gb, 01)

(ag, 10)

(agb, 11)

CayR(G,B)

CayL(G,A)

Figure 5: The subgraph on V00⊔V10 (red) is a copy of (the double cover of) CayL(G,A) (and
so is the subgraph on V01 ⊔ V11). Similarly, the subgraph on V00 ⊔ V01 (teal) is a copy of (the
double cover of) CayR(G,B) (and so is the subgraph on V10 ⊔ V11).

This fact may appear as a homework problem. For some intuition: edges in G□
0 correspond

to a choice of an edge in CayL(G,A) and an edge in CayR(G,B). The corresponding adjacency
matrices commute, and so the eigenvalues multiply. The second largest (absolute value of
an) eigenvalue is then at most 2

√
∆ · 2

√
∆ = 4∆.

For classical Tanner codes, this is all we need. For quantum Tanner codes, we will need
another property. This deals with the fact that we have one new feature in these codes,
which is that we seemingly have two codes overlapping and intersecting with each other, and
we want to know how these codes relate to each other when they overlap.

Let’s look at this property in terms of the Z-code, C1 = Tan(G□
1 , CA ⊗ FB

2 + FA
2 ⊗ CB).

Let x be a codeword. For each v ∈ V01 ⊔ V01, we can restrict x to Q(v) to get a matrix of
bits xv = cv + rv, where cv is a matrix whose columns are in CA, and rv is a matrix whose
rows are in CB.

Individually, we can understand cv and rv, but what happens when we add them together?
In our analysis, we would love it if we really didn’t have to care about this much – that it
would still look like columns came from CA, and rows from CB.

Let’s write ||cv|| for the number of nonzero columns in cv, and ||rv|| for the number of
nonzero rows in rv. Then |cv| ≥ δ∆||cv||, where |cv| is the number of nonzero entries in cv,
since for each nonzero column, there must be at least δ∆ nonzero bits, as δ∆ is the distance.
Similarly, |rv| ≥ δ∆||rv||.

A heuristic, which would be great to be able to use, is that

|xv| ≈ |cv|+ |rv| ≥ δ∆(||cv||+ ||rv||).

7

If we could do this, then we could analyze our code as if the cv’s and rv’s were separate. This
heuristic isn’t quite true, though. For example, if cv and rv are nonzero in a lot of the same
locations, |xv| can be much smaller than |cv|+ |rv|.

So what we want is a code where we can actually instantiate this heuristic. A code of
this form is called a κ-product expanding code.

Definition 3.3. A code C = CA ⊗FB
2 + FA

2 ⊗CB is κ-product expanding if any codeword x
has a decomposition x = c+ r such that

|x| ≥ κ∆(||c||+ ||r||).

From our heuristic, we would like κ close to δ. That’s not always going to be the case,
but we will be able to get codes where κ is a reasonably large constant.

How do we get product expanding codes? Intuitively, this property doesn’t hold when
there’s amazing structure in CA and CB so that we get a lot of cancellation. A natural thing
to try then is to pick random codes CA and CB, and hope they are product expanding. This
was indeed shown by Pantaleev and Kalachev:

Theorem 3.4. [PK22] Pick CA = [∆, ρ∆] and CB = [∆, (1 − ρ)∆] uniformly at random.
The code CA ⊗ FB

2 + FA
2 ⊗ CB is κ-product expanding with high probability as ∆ → ∞ for

κ =
1

2
min

(
1

4
H−1

2

(ρ
8

)2

, H−1
2

(
ρ2

8

))
.

Here, H2(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy (on [0, 1/2], so that it is
invertible).

Remark 3.5. In our dream scenario, κ ≈ δ. Recall from Homework 2 that the distance of
the uniformly random code CB is about H−1

2 (ρ) with high probability. So κ is similar-looking
to the distance for these random codes.

Remark 3.6. In a recent paper by Dinur, Lin and Vidick [DLV24], the authors generalized
these good QLDPC codes to give the best known locally testable codes. When they originally
wrote the paper, their theorem was true assuming a conjecture similar to our product
expansion statement. This statement was later proven, also by Panteleev and Kalachev
[PK24], for random codes. Whenever we are dealing with QLDPC codes, locally testable
codes, or other codes in this family, these product expansion-type properties allow us to
make our analysis, and so there is currently a lot of activity in proving expansion properties
of random codes.

A The Toric Code as a Quantum Tanner Code

Previously, we saw how the toric code is an example of a hypergraph product code. Here,
we show it is also an example of a quantum Tanner code.

8

Take G = ZN × ZN . The elements of G will roughly correspond to position on the torus.
We will take A = {(+1, 0), (−1, 0)} and B = {(0,+1), (0,−1)}.

A square then consists of four vertices: (a, b, 00), (a±1 1, b, 10), (a, b±2 1, 01) and (a±1

1, b±2 1, 11), where ±i represents a consistent choice of + or −. The Q-neighborhood of a
vertex v consists of four squares.

Recall that the CSS code is defined so that qubits lie on the squares. Geometrically, we
can view this as qubits placed on the “00-11” diagonals of squares in the left-right-Cayley
complex, or alternatively, the edges in the graph G□

0 . These diagonals then lie themselves on
a square lattice, rotated relative to the original lattice. This will end up being the primal
lattice for the toric code.

(a− 1, b− 1, 11)

(a− 1, b, 01)

(a− 1, b+ 1, 11)

(a, b− 1, 01)

(a, b, 00)

(a, b+ 1, 01)

(a+ 1, b− 1, 11)

(a+ 1, b, 10)

(a+ 1, b+ 1, 11)

(a, b+ 2, 00)

(a+ 2, b, 00)

(a, b− 2, 00)

(a− 2, b, 00)

Figure 6: The black points (resp. edges) represent the vertices (resp. edges) in the left-right
Cayley complex. The blue edges are the “00-11” diagonals of squares in the complex, or
alternatively edges in the graph G□

0 , on which we place our bits/qubits, and which we will see
forms the primal lattice for the toric code. The squares in the black lattice are the elements
of Q. For example, the four squares in the figure form the Q-neighborhood of (a, b, 00).

9

The inner code is a code on 2× 2 matrices, so a natural choice is to pick CA = CB =: C,
the repetition code on two bits. This codes is self dual: C = C⊥. The elements of CA⊗CB =
C⊥

A ⊗ C⊥
B are (

0 0
0 0

)
and

(
1 1
1 1

)
.

This is because if there is a nonzero entry, then every entry in its row and column must
be a 1, since each row and column must belong to C. The elements of (CA ⊗ CB)

⊥ =
C⊥

A ⊗FB
2 +FA

2 ⊗ C⊥
B = CA ⊗FB

2 +FA
2 ⊗ CB then consist of all 2× 2 matrices with an even

number of 1’s.
The X-code looks at the bits on Q(v), for each v ∈ V00 ⊔V11, and enforces that these bits

are elements of CA ⊗ FB
2 + FA

2 ⊗ CB. In the figure above, this translates to taking a point
that coincides with a vertex of the blue lattice, and checking that there is an even number
of flipped bits on the blue edges adjacent to this vertex.

The Z-code looks at bits of Q(v), for v ∈ V01 ⊔ V10, and checks that these bits are also
elements of CA ⊗ F

B
2 + FA

2 ⊗ CB. In the figure above, v is a point at the center of a blue
plaquette, and we can see that this means checking that an even number of edges bordering
a single plaquette in the primal lattice are flipped.

The X-code and Z-code therefore act exactly as in a surface code! That is, the quantum
Tanner code for this choice of group, generators, and inner code, is a surface code on a surface
tiled by squares.

The surface is either a torus or a pair of tori, depending on the parity of N . We can see
this by considering a path starting at (a, b, 00) and continuing (a, b, 00) → (a+1, b+1, 11) →
(a+ 2, b+ 2, 00) → . . . , alternating between V00 and V11.

If N is odd, then after N steps we’re at the vertex (a, b, 11) rather than (a, b, 00), so it
takes 2N steps in a single direction to return to our starting point. The same holds for the
transverse direction, and moreover, we can reach any point in V00 ∪ V11 from any other. So
for odd N , we end up with a single torus of size 2N × 2N .

For N even, after taking only N steps in any fixed direction we get back to where we
started. But we’re unable to get to half of the points! For example, we cannot get to (a, b, 11)
from (a, b, 00) taking blue edges (since we have to take an even number of steps to get from
(a, b, ii) → (a, b, jj), but after an even number of steps, j = i). We end up with two tori as a
result.

References

[DLV24] Irit Dinur, Ting-Chun Lin, and Thomas Vidick. Expansion of higher-dimensional
cubical complexes with application to quantum locally testable codes, 2024. 3.6

[LZ22a] Anthony Leverrier and Gilles Zémor. Decoding quantum tanner codes, 2022. (doc-
ument)

[LZ22b] Anthony Leverrier and Gilles Zémor. Quantum tanner codes, 2022. (document)

10

[PK22] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical ldpc codes, 2022. 3.1, 3.4

[PK24] Pavel Panteleev and Gleb Kalachev. Maximally extendable sheaf codes, 2024. 3.6

11

	Recap
	Quantum Tanner Codes are CSS Codes
	Parameters for Quantum Tanner Codes
	Rate
	Locality
	Distance

	The Toric Code as a Quantum Tanner Code

